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Continued fraction representation of temporal multiscaling in turbulence
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It was shown recently that the anomalous scaling of simultaneous correlation functions in turbulence is
intimately related to the breaking of temporal scale invariance, which is equivalent to the appearance of
infinitely many times scales in the time dependence of time-correlation functions. In this paper we derive a
continued fraction representation of turbulent time correlation functions which is exact and in which the
multiplicity of time scales is explicit. We demonstrate that this form yields precisely the same scaling laws for
time derivatives and time integrals as the “multi-fractal” representation that was used before. Truncating the
continued fraction representation yields the “best” estimates of time correlation functions if the given infor-
mation is limited to the scaling exponents of the simultaneous correlation functions up to a certain, finite order.
It is worth noting that the derivation of a continued fraction representation obtained here for a time evolution
operator which is not Hermitian or anti-Hermitian may be of independent int¢&K63-651X99)05511-7

PACS numbsd(s): 47.27.Gs, 47.27.Jv, 05.40a

[. INTRODUCTION with the conclusions in Ref3]. The advantage of the con-
tinued fraction expansion is threefold: first, it is derived on
It is commonly argued1,2] that fully developed hydro- the basis of an exact formulation of the time correlation
dynamic turbulence exhibits simultaneous statistical objectsunctions and their dynamics. The phenomenon of temporal
whose scaling properties are anomalous. For example the saultiscaling is related in this approach to the scaling prop-
called structure functions satisfy scaling laws of the form erties of higher order moments or, equivalently, of higher
order temporal derivatives of the correlation functions, com-
SR =([U(r +R,t)—u(r,H)|"~R", (1) puted at zero time difference. Second, this approach fur-
nishes information not only about the leading temporal scal-
where () stands for a suitably defined ensemble averageing exponents, but also about the subleading ones. Third, a
Here u(r,t) is the Eulerian velocity field, and th&, are finite truncation of the continued fraction representation is in
scaling exponents which are nonlinear functionsnofThe  a sense the “best” possible representation when the infor-
separation distanc® lies in the “inertial range,” i.e.,n mation about the scaling of the set of one-time correlation
<R<L with 7 the inner viscous scale aridthe outer inte-  functions of all moment orders is limited to the low order
gral scale of turbulence. The nonlinear dependence is rescaling exponents. We will show that the scaling laws exhib-
ferred to as “anomalous scaling” or “multiscaling,” and the ited by the continued fraction representation are identical to
issue of evaluating these exponents from either phenomenthose derivable by the “multifractal” representation of the
logical models or from first principles has attracted signifi-time-correlation function4], adding weight and justification
cant amount of effort in the last decade. to the latter. Since the multifractal representation was used
It has only recently been discoverEg] that also the time recently to estimate the scaling exponents from first prin-
dependence of thath order correlation functions is multi- ciples[5], we ascribe some weight to being able to justify it
scaling, and that “dynamical scaling” is broken. This phe- further.
nomenon seems to distinguish turbulence from other prob- To keep the formalism minimal and the result clearest, we
lems in which scaling is anomalous, such as criticaltreat in this paper only the second order space-time correla-
phenomena. In the latter case dynamical scaling is invoketlon function of turbulent fields. The formalism can be used
by stating that a space time correlation functlo{R,t) isa to generate representations of any higher order correlation
homogeneous function of its arguments in the sense thdtinction, but we do not elaborate on this in the present text.
F(NR,\%)=\F(R,t), where/ andz are the “static” and In Sec. Il we review briefly the Zwanzig-Mori formalism
“dynamic” scaling exponents, respectively. In turbulence[8,9] which was applied to time correlation functions in tur-
such relations do not exist even when the same-time corrdsulence[6,7], and display the continued fraction representa-
lation functions are homogeneous functions of the spatialion of the second order time correlation function of the ve-
coordinates. The importance of this fact in determining thdocity field differences. We show that the coefficients in this
structure of the theory has been stressed in Refsee also representation can be written in terms of time derivatives at
[5]. equal times of the same second order correlation function or,
In this paper we address temporal multiscaling on the baequivalently, in terms of the whole set of théh order equal
sis of the continued fraction representation of turbulent cortime correlation functions for alh. In Sec. Ill we set up a
relation function[6,7]. This approach will lead us to a dif- theory for the evaluation of the scaling exponents of these
ferent point of view of temporal multi-scaling, in agreementcontinued fraction coefficients. In Sec. IV we derive the scal-
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ing laws implied by the continued fraction representation fordy (r,to|r —p(ro,t),t],t)  du(r,t)

the time derivatives of the correlation function evaluated at dt = dt
equal times. In Sec. V we relate our results to the multifractal
representation of the correlations functions, and explain the au(r,t)
scaling-equivalence of the two representations. In Sec. VI we = TLur,y-Viu(r,b)
offer a summary and a short discussion.
8
Il. CONTINUED FRACTION REPRESENTATION Translating all coordinates by(ro,t) we find

In thinking about the dynamics of turbulent flow one can-
not deal with time-correlation functions of the Eulerian field N ,
since these are dominated by the kinematic sweeping time L(ro tolr.r ):E +V(rotolryto)- Vi
scale. We need to consider Lagrangian or Monin-Belinicher- o
L'vov velocity differences. We prefer the latter since they +v(rg,tolr',to)-V, . 9)

obey Navier-Stokes-like equations of motion which are local
in time. In terms of the Eulerian velocity(r,t) Monin [10]  Consider now the time dependence of the “fully fused” sec-
and also Belinicher and L'vov{11] defined the field ond order correlation function
v(ro,tolr,t) as
FP(rolr.r’,7) = (W (ro|r 1" t) WA(rq|r 1 to+ 7).

v(ro,to|r,t)=u[r+p(rg,t),t], (2 (10
where By “fully fused” we mean here that the space coordinates of
. the two velocity differences are the same, and they differ
P(ro,t):f dsury+p(rg,s),s]. (3) only in their time arguments. The same-time counterpart of
to this correlation function, i.e.F,(ro|r,r’,7=0) is indepen-

) o dent ofry and in an isotropic and homogeneous ensemble it
The observation of Belinicher and L'voM 1] was that the s g function of|r —r’| only. Accordingly it differs from the
variables\W(ro,to|r.r',t) defined as standard structure functio8,(|r—r’|) only in having the
, , full second rank tensorial character. For this analysis we
Wro,tol 1 =V (To,tolr ) —v(rotolr", ), (4) choose all the three vector distances to have the modulus in
exactly satisfy a Navier-Stokes-like equation in the incom_the |n.ert|al range, of_the order &. For the sake of notation
pressible limit: we will keep only thisR but remember that thg angular de-
' pendence is understood but not shown explicitly.
P To proceed, we consider the tensorial correlation function
—+5W(r0,to|r,ro,t)-Vr+5’W(ro,t0|r’,ro,t)~Vr' (10) as an inner product in the state space of vectdis
Jt denoted as

—U(V24 V) | W(rg.tolr,r' 1) =0. (5) Fy(R,7)=(W,eEW). (11)

We emphasize that the application of the transversal proll Particular we are interested in the Laplace transform of
jectorﬁto any given vector fieldi(r) is nonlocal, and has Eq. (1D
the form .
W, ——W

z—L

Fr(R,2)= . (12)

[Pa(r)]*= f dFPA(r —T)al(F). (6)

- " It has been shown by Grossmann and Thor@ethat the

The expllglt form of the kerneVDf(r) can be fou_nd, _for Zwanzig-Mori projection operator formalisp8,9] applies to
example, in Ref[12]. In Eq. (5) P and P’ are projection  tyrpylent systems described by Navier-Stokes-like equations.
operators which act on fields that depend on the correspongn Ref. [7] it has been demonstrated that the contribution of
ing coordinateg andr’. For our purpose below we intro- the memory kernel and of the higher order continued fraction
duce the Liouville operato£(rg,to|r,r') for the time evo-  coefficients is considerable. The central idea is to decompose
lution which is defined via the total time derivative of the resolvent

W(rg,to|r,r’,t) at timet=tg:

1

2 , , R(z)=—— (13)
=L(rg,to|r,r )Y WI(rg,tolr,r',to). —7

7 . A S
@ by means of a projection operatér acting in state space.

The identification of the Liouville operator follows from the With Q=1—P as projector orthogonal t& one has the
definitions(2) and (4), resolvent identity

dW(ro,tolr,r' 1)
dt

‘t:to
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1
7-PLP-PLO[1(z—OLO)OLP
(14

Since we note that the correlation function of interest -eq.
(12)- is the W-WV matrix element of the resolvent we choose

P to be the projector om,

B.

WOWIW) W, ). (15)

lts basic properties ar®P=P (idempotent and PT=pP
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Wi=0LwW, Wy=0'2'w, £,=0L0 (22)
so thatkK (R, z) takes on the form
~ ~ 1
Ko(R,Z):(Wl,—AWl)/ko. (22)
Z_,Cl
Now we define a new projection operator
P1- =Wy (W, Wy) (O, ). (23

(self-adjoin}, characterizing an orthogonal projection. Now Because/V; is different fromW, when Z is not Hermitian

Eq. (14) yields the following expression fdP:

U
z-PLP-PLO————OQLP

z—QLQ

Computing theV-»V matrix element of the previous equa-
tion gives

P=PR(z)P . (16

W, W) =[ W, R(2)W](OW, W)~ 20V, W) — (W, L)

— | W.2Q } MQEW) (17)
z—-QL0
Hence one obtains
- K
Fa(R2)= o . (18)
z—vo(R)—Ko(R,2)
where
Ko(R)=(W, W),
Yo(R)=(W,LW)/k,
Ko(R,2)= Q%W,%in Iko. (19
z— QL0

Notice thatky,yo,Ko are tensors a¥, is itself so that Eq.
(18) is a shorthand notation for

ksA(R)
z- y§#(R)-Kg#(R2)

F5A(R,2)= (20)

Here, of courseQ=Q, but in the next steps of generating
the continued fraction hermiticity will not hold i and its
adjoint 2T do not identify directly or up to a sign. Realizing

that the kerneKy(R,z) has the same resolvent structure as

F,(R,z) except that it now feature® £Q instead ofZ and

that the states ar® 2" as the bra vectors an@ZW as
the ket vectors instead oV and V, one can continue the

or anti-Hermitian, this operatd?; is not Hermitian and per-
forms accordingly non-orthogonal projections. E?litstill is
idempotent,P,P,=P,, which is the essential property for
deriving the analogous resolvent identity with in Eq. (22)
as for the original resolventl2) with Z. Defining Q;=1

—P; we can repeat the argument leading to Ed®) and
(19), and find

ki(R)
z—y1(R)—K1(R,2)

Ko(R,2)= (24)

where
ki(R)= (W, Wi)lko,

71(R)= (Wl azlwl)/klko )

1 "
A—Ql‘ClWl)/klkO'
Q:£,Q,

Ki(R,2)=| QIZIW,, —
Z2— Q1L
(25)

Hence, repeating this procedure the Laplace transform

F,»(R,z) of the correlation functior(10) can be written in
continued fraction representation:

Ko(R)
ki(R)
k2(R)

Z—y(R)—"-.
(26)

ﬁz(R,Z) =

z—yo(R)—
z—y1(R)—

In this expression we used, for=1,2,..., the notation

kn(R):(VVn VK- 1Ko “kO!

')’n(R)z(WnvznaWn)/knkn—l'"kOv 27
where
Wh= Qn—lzn—lwn—lr Wn: Ql_lﬁﬁ-lf\/n-l,
zn:Qn—lzn—lén—l- (28

fraction by the same procedure. This is more transparent it each iteration of the procedure new projection operators

we denote

are defined as
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P :Wn(wn rWn)_l(Wn )
Qn:i_'sn- (29

The novelty when the operatdris not Hermitian or anti-
Hermitian as is the case with the operatbdefined in Eq.

(9) is that the new projection operators introduced to con
tinue the fraction are not self-adjoint, performing thus non-

orthogonal projections. Only the operatétsandQ perform

orthogonal projections. In the following section we analyze

the scaling properties of this representation.

Ill. SCALING PROPERTIES OF THE CONTINUED
FRACTION REPRESENTATION
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We now turn to the tensdy; defined in Eq(25) which using
Eq. (21) is written as

ky(R)=(QTLW,QLW) ko= (W,LOLW)IKy. (35)

The second equality results from the fact tiais idempo-

tent. Using the definition of)=1—P one gets two terms

which contribute. Applying then the explicit form of the pro-
jector P one obtains for these two terms

ki(R)=(W,L2W)/Kko— (W,LV)?IK3. (36)
Hence one obtains the following scaling:
kl(R)o(R§4*{2*2(1+ConstRéTs*{z*({rh))_ (37)

In this section we determine the leading scaling exponentg,q leading term on the right-hand side of E87) can be

of the quantitiek,(R) and y,(R) which appear in the con-
tinued fraction expansiof26). Notice that these quantities
are tensors as the correlation function Etp) itself is. We

determined using the inequality

gm_é’m—lsgn_gn—li m=>n. (38)

shall show that the leading scaling behavior is given in terms
of correlation functions of time derivatives of the velocity This follows from the convexity of the structure function

differencesWW computed at zero time differences:
Kn(R)=(L"W,L"W)/Kq_1Kn 5" Ko,
Ya(R) = (LWL W) Kk — 1Ko - (30)

Here the symbot means “in leading scaling order” in the
limit Re—c and we recall from Eq(7) that
dW(ro,to|r,r'b)]

dt

Z(r01t0|r!r,)W(r01t0|r!r,1t0): ‘
t=ty

(31

To demonstrate the correctness of the form&s let us
consider first the tensdt, defined in Eq.(19). Because of
isotropy[see remark below Eq10)] its scaling is the same
as that of the second order structure funci®rgiven in Eq.

(D

Ko(R)= (W, W) xR, (32

As for the tensory, notice that it features the operat6r

Yo(R) =W, LW)/K,. (33

We recall that from the scaling point of view in the limit of
infinite Reynolds number the operatar within the inner
product(or equivalently within the averaging operat)@im-
ply amounts to multiply withW/R, see Ref[3]. This fol-
lows from the convergence in tHéV and in thelR (in the

limit Re—x) of the integral implied by the terrrfﬁW-Vr in

exponent, as a function oh, which in turn is an immediate
consequence of Schwarz’ inequality applied to atty order
structure function decomposition inte=m; +m, order ones
together with choosing the outer integral scaland not the
inner scalen as the reference length.

|Sa(R)[ = [ M) | < (W) VR 2me) 12

= (Szm,Somy) 2 (39
Scalingwise,S(R) = (R/L)¢, again usingL as the reference
length. Becaus®/L<1, Eq.(39) implies

Lom, t Lom,
dnpamy™ % (40)
the defining property of convex functions. These enjoy a
monotonously nonincreasing derivative, i.e., E2f).

The contributions of the two terms in E¢37) can be
written as - constR/L)X, with x={3—,—({4—{3). In the
monofractal case is zero, thus both terms scale alike. If
there is multifractality, the nonlinear intermittency correc-
tions makex# 0. It now depends on the sign gfand again
on the choice of the reference length for the multifractal
scaling, whether the second term is subdominant or domi-
nant. If the reference length ig the inner viscous scale, then
R/7»>1 and the second term dominates for positief,
instead, the reference lengthliswe haveR/L <1, implying
that the second term is subdominant for positiveBut in-
deedx=0 is a consequence of Schwarz’ inequality which
together with identifyingL as the reference length implies

Eg. (5), so that the leading contribution comes from dis-Eq. (38). That L is the relevant reference length is under

tances of the order d® In other words, the operatdt in a
correlation function, when it operates oW, introduces a

discussion but there are plausible argumémty though no
rigorous proof. Positivex together withL as the proper ref-

locality in scale space, can be estimated as adding to th@"d term in Eq(37) can be neglected R s well within the

correlation a factor of the order &/R. Hence using Eq.1)
one obtains

Yo(R)=R%™ 271, (34

inertial range.
One obtains then

ki(R)~ (W, L2W)/kgx Ré4™ 4272, (41)
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We are now in the position to determine the scaling of all theyhere/Cy(R, 7) is the inverse Laplace transform (R, z),
tensorsk, and y, appearing in Eq(26). Proceeding along see Eq(22), i.e.,

the same lines one gets
1 - -
kn(R) = (W, L2"W)/Kn_ 1Kq— 5 Ko, Ko(Ru7)= gy (M e, (46)

Yn(R) =~ (W, L2 W) IK K- 1+ Ko - (42)  Equation (45) is the so-called memory-function equation,
Ko(R,7) being the memory kernel. At=0 Eq. (45 be-
This result can also be obtained by induct{d3]. Eq. (42) comes
together with Eq(1) yield then the following explicit scaling
= : JF.
for n 1,2,.... a_:(R,O):,yo(R)ko(R)ocRé’:;*l, (47)
K,(R)xRén+2" 202,
where we used the scaling laW32), (34).

Yn(R) s Rézn+3~ezns 2™, (43 The second order partial time derivative is obtained by
L ) ) differentiating Eq.(45),
In finishing this section we note that the essence of the ar-

i i O.=1—F - PPFHR, 7 I
gumgnt is that for allh the prOJectorsQ,l 1-P, can scal 2(R,7) :yo(R)—Z(R,T)+KO(R,7—)]-‘2(R,O)
ingwise be approximated as 1, sinégcc(R/L)* and x ar* ar
={j+1= = ({12 {j+1) for some appropriate The terms B IF
omitted in comparison to the leading scaling order ones are +J' dT’Ko(R,T’)—z(R,r— 7). (48)
negligible only if there is substantial multifractality. They 0 aT

may contribute at the inner scale border of the inertial range, .
i.e., if R approaches; from above. The larger Re, the longer At 7=0 from Eqgs.(25), (46), (47) one obtains
is the inertial subrange, the better is the leading order ap- PF
proximation. 7 (RO=K(RI[ %R +ke(R)] (49
In case thaty would be the relevant reference length the Jr ' 0 ’
leading scaling approximation of the continued fraction co- _ . i . o
efficients would be different, resulting in a different multi- Which, using Schwarz’ inequality in the forii@8) together
scaling of the correlations. These differences can be subf¥ith R/L=<1 in the inertial subrange, is found to scale in
jected to experimental test. leading order as
In closing this section we emphasize that in the mono- P2F
fractal case we have to expect that all terms resulting from _;(R,o)%ko(R)kl(R)ocRZrZ_ (50)
the decomposition of th€ projectors contribute alike, as ar
was observed already in Rdf7]. Since the intermittency
corrections, which are responsible forbeing nonzero, are
small, for the physically realizable Reynolds numbers Re on
still will need all terms. It is only asymptotically for large PF,
enough Re that the leading scaling order will suffice. It is the — (R,00~kq(R)ky(R) y1(R)xR% 3, (51)
advantage of the continued fraction expansion as compared 97
to the multifractal representation that all corrections are fuIIyOn e arrives thus at

Differentiating Eq.(48) once more and evaluating at=0
gne finds

included.
anz

IV. SCALING LAWS IMPLIED BY THE CONTINUED W(R,0)~ko(R)'“kn(R)“RQ””*Z”

FRACTION REPRESENTATION: DERIVATIVES AT TIME
ZERO T, {349n—2n—1

In this section we identify the leading scaling exponents ~ ; 2n+1 (R,0)~ko(R)---kn(R) yn(R)cRe3+2n '
that characterize theth order time derivative of the correla- (52)
tion function Eq.(11) at 7=0. We show that in the limit
Re—» which can also be proven more formally by complete induc-

tion [13]. The general expression comprising these
=1,2,3 cases can be written in the form of Edg).
We have thus derived the complete Taylor series of the
dynamical correlation functiodr,(R, ), in which not only
From Eq.(18) one deduces by inverse Laplace transformthe scaling behavior of the coefficients but also their absolute
the following equation: magnitude can be evaluated,

I"Fr(R,T)

o xR+~ "n=0,1,.... (44)

=0

o o

n 1
=yO<R)f2<R,r>+fKo<R,r'>f2<R,r—r'>dr', FHRD= &fZ(R,ow”:EOHAAR/L)?W”T”.

T
0 ion! o7 =

(45) (53

(9.7-"2(R, T)
aT
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In the special case of monofractality in the spatial scalingiions regarding the multiplicity of time scales characterizing

we obtain also temporal monoscaling from E§3). Let ¢,

=n¢,, then {,,,—n=2¢;—n(1-¢;). Therefore, the
monofractal form arises
Fo(R,7)=R21f 5(7/RY%1), (54)

wheref, is a function of the scaled time variable only. The
dynamical scaling exponent in the monofractal case is thus

z=1- ¢, while the static exponents atg=n{;.

V. THE MULTISCALING REPRESENTATION

the time correlation functions as the multiscaling representa-
tion. We take this as an independent evidence for the cor-
rectness of the latter. If corrections to scaling become rel-
evant, the continued fraction form, being exact, has to be
taken.

VI. CONCLUSION

In conclusion, we showed that the exact continued frac-
tion expansion of the time correlation functions of the
Monin-Belinicher-L'vov-velocity differences has the same

In this section we compare two independent expressiongaylor expansion as the multiscaling representation of these
for the correlation functionF,(R,7): on the one hand the correlation functions, order by order in terms of the leading

multiscaling representation considered in R8&f.(which has

scaling contributions. We wish to emphasize that the contin-

not been used here so far despite the fact that we used th¢d fraction representation can be used as an approximant
word multiscaling in the text aboyeand on the other hand for the time correlation function, when analytic forms of
the continued fraction representation derived here. The mufUch time-correlation functions are needed. In the lowest or-

tiscaling representation of,(R,7) can be written a$3]

fz(L>, (55
TR,h

2h+ 2(h)

fz(R:T):UZJ dM(h)(E

whereU is the characteristic magnitude of the velocity dif-

ference across the outer scale of turbulerfigas a function
of the scaled time variable only, and

Lh
=k

The functionZ(h) is related to the scaling exponerits of

R

TRh™ 17

0 (56)

der continued fraction approximation one takes in Exf)
k,(R)=0, producing an exponential temporal decay of the
correlation function, with the decay ratg(R)«<R%™ <21,
The next approximatiork,=0, is written as

Ko(R)
z—yo(R)—ky(R)/[z— y1(R) ]

Fo(R,2)= (61)

In every successive approximatiok,& 0, k=0, etc) one
introduces more and more characteristic scales, each one
characterized by a different “dynamical exponent,” taking
progressively more information about the statistics of higher

the nth order structure functions through the saddle pointorder correlation functions into account.

requirement

{o=min[nh+ Z(h)]. (57
h

To find the scaling exponents associated with the time d

rivatives of 7,(R,7) at =0 one computes thath order
partial time derivative of Eq(55) to obtain

O”nj:z(R,T) U2+n R (2+n)h+ Z(h) O’)nfz pe
= fd,u(h) T —-

ar" TR at" \ Trp
(59

At 7=0 this gives

&n]_-z &nf2 U2+n R (2+n)h+ Z(h)
5 (RO)=——5(0) f d,u(h)(t>
(59

Computing the integral at the saddle point in the lifRiiL
—0 and using Eq(57) we find

n]:2
aT"

(R,0)ocRé2+n ™", (60)

We notice that this scaling is the same as in El) ob-
tained from the continued fraction representation J&f

which is derived independently of the multiscaling represen

e_

Each finite,mth order continued fraction approximation
results in anm-pole representation, whose poles as well as
residues can be calculated from the static moments up to the
order 2n. The temporal correlation decay is a superposition
of m exponentials with calculable decay rates.

As a final remark we stress that the conclusion is valid
forward and backward: nonlinear or multiscaligg of the
spatial scaling of the correlation functions imply temporal
multiscaling and vice versa, i.e., temporal monoscalimigh
some scaling exponery) is consistent only with linear,
monoscalingl,=n¢; in spatial scaling. This sufficient and
necessary relation follows from the uniqueness of the contin-
ued fraction expansion. Namely, it is the very essence of the
continued fraction representation that it completely deter-
mines all dynamical features from the static, i.e., equal time
correlators.

One can easily identify the temporal scaling exporent
defined in Eq.(1) or its negativea= — z for the \-rescaling
exponent of the Laplace space frequency, if the static mo-
ments obey monoscaling. Start by convincing yourself that

all y, scale as’,, which behave ag itself, because scal-
ingwise theQ's are 1, thus ally,=W/RxR1~ 1, Next verify
that all k, scale asCL. When rescalingF,(AR,\%Z), one
has to comparaz with A*2~1y order by order of the con-
tinued fraction, implyinga= {;— 1. (The numerator in each

memory kernek,, is «LL, the corresponding denominator

tation. We thus see that the leading scaling approximation of £, thus eacth order memory contribution behaves like
the continued fraction expansion generates the same predi€; as they's do)
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If there are intermittency corrections, meaning nonlinear [cf. Eq.(10)] as functions of both the spatial sc&eand the
dependence of thé,, the y, are «Z,, and thek,xZ,l,, time 7, because on the latter it has a nontrivial functional

beingnth or 2nth order moments, all scale differently with dependence reflecting spatial multifractality in the dynamics.
R. Each continued fraction order thus has differBrecaling ~ Secondly, the extension of the continued fraction expansion
coefficients, therefore breaking any clearcut scaling of thd0 hon-Hermitian dynamics, given here for the first time to
Laplace variable. Note that the “amount” of breaking the ~ the best of our knowledge, should prove useful for other
or 7scaling is of the order of the range in which thediffer. ~ Physical systems sharing this property.

It should be clear that the lowest order continued fraction,

putting K,=0, still enjoys time scaling, because only one
moment,yy(R), determines the dynamics. It also means that We thank Daniela Pierotti and Reuven Zeitak for discus-
any higher order truncation of the continued fraction influ-sions concerning the non-Hermiticity of the Liouvillian. This
ences the value of the approximatexponent. One needs work was supported in part by the German Israeli Founda-
the full continued fraction Eq(26) to obtain the correct  tion, the European Commission under the Training and Mo-
behavior. bility of Researchers program, The Basic Research Fund ad-

In closing we first point out that besides measuring higheministered by the Israel Academy of Science and
order static equal time moments to determine the continuetlumanities, the Minerva Center for Nonlinear Physics, and
fraction coefficients experimentalists should feel highly en-the Naftali and Anna Backenroth-Bronicki Fund for Re-
couraged to measure second order time correlation functiorsearch in Chaos and Complexity.
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