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Continued fraction representation of temporal multiscaling in turbulence
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It was shown recently that the anomalous scaling of simultaneous correlation functions in turbulence is
intimately related to the breaking of temporal scale invariance, which is equivalent to the appearance of
infinitely many times scales in the time dependence of time-correlation functions. In this paper we derive a
continued fraction representation of turbulent time correlation functions which is exact and in which the
multiplicity of time scales is explicit. We demonstrate that this form yields precisely the same scaling laws for
time derivatives and time integrals as the ‘‘multi-fractal’’ representation that was used before. Truncating the
continued fraction representation yields the ‘‘best’’ estimates of time correlation functions if the given infor-
mation is limited to the scaling exponents of the simultaneous correlation functions up to a certain, finite order.
It is worth noting that the derivation of a continued fraction representation obtained here for a time evolution
operator which is not Hermitian or anti-Hermitian may be of independent interest.@S1063-651X~99!05511-7#

PACS number~s!: 47.27.Gs, 47.27.Jv, 05.40.2a
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I. INTRODUCTION

It is commonly argued@1,2# that fully developed hydro-
dynamic turbulence exhibits simultaneous statistical obje
whose scaling properties are anomalous. For example th
called structure functions satisfy scaling laws of the form

Sn~R!5^uU~r 1R,t !2u~r ,t !un&;Rzn, ~1!

where ^& stands for a suitably defined ensemble avera
Here u(r ,t) is the Eulerian velocity field, and thezn are
scaling exponents which are nonlinear functions ofn. The
separation distanceR lies in the ‘‘inertial range,’’ i.e.,h
!R!L with h the inner viscous scale andL the outer inte-
gral scale of turbulence. The nonlinear dependence is
ferred to as ‘‘anomalous scaling’’ or ‘‘multiscaling,’’ and th
issue of evaluating these exponents from either phenom
logical models or from first principles has attracted sign
cant amount of effort in the last decade.

It has only recently been discovered@3# that also the time
dependence of thenth order correlation functions is multi
scaling, and that ‘‘dynamical scaling’’ is broken. This ph
nomenon seems to distinguish turbulence from other pr
lems in which scaling is anomalous, such as criti
phenomena. In the latter case dynamical scaling is invo
by stating that a space time correlation functionF(R,t) is a
homogeneous function of its arguments in the sense
F(lR,lzt)5lzF(R,t), wherez and z are the ‘‘static’’ and
‘‘dynamic’’ scaling exponents, respectively. In turbulen
such relations do not exist even when the same-time co
lation functions are homogeneous functions of the spa
coordinates. The importance of this fact in determining
structure of the theory has been stressed in Ref.@4#, see also
@5#.

In this paper we address temporal multiscaling on the
sis of the continued fraction representation of turbulent c
relation function@6,7#. This approach will lead us to a dif
ferent point of view of temporal multi-scaling, in agreeme
PRE 601063-651X/99/60~6!/6656~7!/$15.00
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with the conclusions in Ref.@3#. The advantage of the con
tinued fraction expansion is threefold: first, it is derived
the basis of an exact formulation of the time correlati
functions and their dynamics. The phenomenon of tempo
multiscaling is related in this approach to the scaling pro
erties of higher order moments or, equivalently, of high
order temporal derivatives of the correlation functions, co
puted at zero time difference. Second, this approach
nishes information not only about the leading temporal sc
ing exponents, but also about the subleading ones. Thir
finite truncation of the continued fraction representation is
a sense the ‘‘best’’ possible representation when the in
mation about the scaling of the set of one-time correlat
functions of all moment ordersn is limited to the low order
scaling exponents. We will show that the scaling laws exh
ited by the continued fraction representation are identica
those derivable by the ‘‘multifractal’’ representation of th
time-correlation function@4#, adding weight and justification
to the latter. Since the multifractal representation was u
recently to estimate the scaling exponents from first pr
ciples@5#, we ascribe some weight to being able to justify
further.

To keep the formalism minimal and the result clearest,
treat in this paper only the second order space-time corr
tion function of turbulent fields. The formalism can be us
to generate representations of any higher order correla
function, but we do not elaborate on this in the present te
In Sec. II we review briefly the Zwanzig-Mori formalism
@8,9# which was applied to time correlation functions in tu
bulence@6,7#, and display the continued fraction represen
tion of the second order time correlation function of the v
locity field differences. We show that the coefficients in th
representation can be written in terms of time derivatives
equal times of the same second order correlation function
equivalently, in terms of the whole set of thenth order equal
time correlation functions for alln. In Sec. III we set up a
theory for the evaluation of the scaling exponents of th
continued fraction coefficients. In Sec. IV we derive the sc
6656 © 1999 The American Physical Society
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ing laws implied by the continued fraction representation
the time derivatives of the correlation function evaluated
equal times. In Sec. V we relate our results to the multifrac
representation of the correlations functions, and explain
scaling-equivalence of the two representations. In Sec. VI
offer a summary and a short discussion.

II. CONTINUED FRACTION REPRESENTATION

In thinking about the dynamics of turbulent flow one ca
not deal with time-correlation functions of the Eulerian fie
since these are dominated by the kinematic sweeping
scale. We need to consider Lagrangian or Monin-Belinich
L’vov velocity differences. We prefer the latter since th
obey Navier-Stokes-like equations of motion which are lo
in time. In terms of the Eulerian velocityu(r ,t) Monin @10#
and also Belinicher and L’vov@11# defined the field
v(r 0 ,t0ur ,t) as

v~r 0 ,t0ur ,t ![u@r 1r~r 0 ,t !,t#, ~2!

where

r~r 0 ,t !5E
t0

t

dsu@r 01r~r 0 ,s!,s#. ~3!

The observation of Belinicher and L’vov@11# was that the
variablesW(r 0 ,t0ur ,r 8,t) defined as

W~r 0 ,t0ur ,r 8,t ![v~r 0 ,t0ur ,t !2v~r 0 ,t0ur 8,t !, ~4!

exactly satisfy a Navier-Stokes-like equation in the inco
pressible limit:

F ]

]t
1PJW~r 0 ,t0ur ,r 0 ,t !•¹ r1PJ8W~r 0 ,t0ur 8,r 0 ,t !•¹ r8

2n~¹ r
21¹ r8

2!GW~r 0 ,t0ur ,r 8,t !50. ~5!

We emphasize that the application of the transversal p
jector PJ to any given vector fielda(r ) is nonlocal, and has
the form

@PJa~r !#a5E dr̃Pab~r 2 r̃ !ab~ r̃ !. ~6!

The explicit form of the kernelPab(r ) can be found, for
example, in Ref.@12#. In Eq. ~5! PJ and PJ8 are projection
operators which act on fields that depend on the corresp
ing coordinatesr and r 8. For our purpose below we intro
duce the Liouville operatorL̂(r 0 ,t0ur ,r 8) for the time evo-
lution which is defined via the total time derivative o
W(r 0 ,t0ur ,r 8,t) at time t5t0 :

dW~r 0 ,t0ur ,r 8,t !

dt U
t5t0

[L̂~r 0 ,t0ur ,r 8!W~r 0 ,t0ur ,r 8,t0!.

~7!

The identification of the Liouville operator follows from th
definitions~2! and ~4!,
r
t
l
e
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dv~r 0 ,t0ur 2r~r 0 ,t !,t#,t)

dt
[

du~r ,t !

dt

5
]u~r ,t !

]t
1@u~r ,t !•¹#u~r ,t !

~8!

Translating all coordinates byr(r 0 ,t) we find

L̂~r 0 ,t0ur ,r 8!5
]

]tU
t5t0

1v~r 0 ,t0ur ,t0!•¹ r

1v~r 0 ,t0ur 8,t0!•¹ r 8 . ~9!

Consider now the time dependence of the ‘‘fully fused’’ se
ond order correlation function

F2
ab~r 0ur ,r 8,t!5^Wa~r 0ur ,r 8,t0!Wb~r 0ur ,r 8,t01t!&.

~10!

By ‘‘fully fused’’ we mean here that the space coordinates
the two velocity differences are the same, and they dif
only in their time arguments. The same-time counterpar
this correlation function, i.e.,F2(r 0ur ,r 8,t50) is indepen-
dent ofr 0 and in an isotropic and homogeneous ensembl
is a function ofur 2r 8u only. Accordingly it differs from the
standard structure functionS2(ur 2r 8u) only in having the
full second rank tensorial character. For this analysis
choose all the three vector distances to have the modulu
the inertial range, of the order ofR. For the sake of notation
we will keep only thisR but remember that the angular d
pendence is understood but not shown explicitly.

To proceed, we consider the tensorial correlation funct
~10! as an inner product in the state space of vectorsW,
denoted as

F2~R,t!5~W,eL̂tW!. ~11!

In particular we are interested in the Laplace transform
Eq. ~11!

F̃2~R,z!5S W,
1

z2L̂
WD . ~12!

It has been shown by Grossmann and Thomae@6# that the
Zwanzig-Mori projection operator formalism@8,9# applies to
turbulent systems described by Navier-Stokes-like equatio
In Ref. @7# it has been demonstrated that the contribution
the memory kernel and of the higher order continued fract
coefficients is considerable. The central idea is to decomp
the resolvent

R̂~z!5
1

z2L̂
~13!

by means of a projection operatorP̂ acting in state space
With Q̂51̂2 P̂ as projector orthogonal toP̂ one has the
resolvent identity
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P̂R̂~z!P̂5 P̂
1

z2 P̂L̂P̂2 P̂L̂Q̂@1/~z2Q̂L̂Q̂!#Q̂L̂P̂
.

~14!

Since we note that the correlation function of interest -
~12!- is theW-W matrix element of the resolvent we choo
P̂ to be the projector onW,

P̂•[W~W,W!21~W,• !. ~15!

Its basic properties areP̂P̂5 P̂ ~idempotent! and P̂†5 P̂
~self-adjoint!, characterizing an orthogonal projection. No
Eq. ~14! yields the following expression forP̂:

P̂5 P̂R̂~z!P̂F z2 P̂L̂P̂2 P̂L̂Q̂
1

z2Q̂L̂Q̂
Q̂L̂P̂G . ~16!

Computing theW-W matrix element of the previous equa
tion gives

~W,W!5@W,R̂~z!W#~W,W!21F z~W,W!2~W,L̂W!

2S W,L̂Q̂
1

z2Q̂L̂Q̂
Q̂L̂WD G . ~17!

Hence one obtains

F̃2~R,z!5
k0~R!

z2g0~R!2K̃0~R,z!
, ~18!

where

k0~R!5~W,W!,

g0~R!5~W,L̂W!/k0 ,

K̃0~R,z!5S Q̂†L̂†W,
1

z2Q̂L̂Q̂
Q̂L̂WD /k0 . ~19!

Notice thatk0 ,g0 ,K̃0 are tensors asF̃2 is itself so that Eq.
~18! is a shorthand notation for

F̃2
ab~R,z!5

k0
ab~R!

z2g0
ab~R!2K̃0

ab~R,z!
. ~20!

Here, of course,Q̂†5Q̂, but in the next steps of generatin
the continued fraction hermiticity will not hold ifL̂ and its
adjoint L̂† do not identify directly or up to a sign. Realizin
that the kernelK̃0(R,z) has the same resolvent structure
F̃2(R,z) except that it now featuresQ̂L̂Q̂ instead ofL̂ and
that the states areQ̂†L̂†W as the bra vectors andQ̂L̂W as
the ket vectors instead ofW and W, one can continue the
fraction by the same procedure. This is more transpare
we denote
.

s

if

W15Q̂L̂W, W̃15Q̂†L̂†W, L̂15Q̂L̂Q̂ ~21!

so thatK̃0(R,z) takes on the form

K̃0~R,z!5S W̃1 ,
1

z2L̂1

W1D /k0 . ~22!

Now we define a new projection operator

P̂1•[W1~W̃1 ,W1!21~W̃1 ,• !. ~23!

BecauseŴ1 is different fromW1 when L̂ is not Hermitian
or anti-Hermitian, this operatorP̂1 is not Hermitian and per-
forms accordingly non-orthogonal projections. ButP̂1 still is
idempotent,P̂1P̂15 P̂1 , which is the essential property fo
deriving the analogous resolvent identity withL̂1 in Eq. ~22!

as for the original resolvent~12! with L̂. Defining Q̂1[1
2 P̂1 we can repeat the argument leading to Eqs.~18! and
~19!, and find

K̃0~R,z!5
k1~R!

z2g1~R!2K̃1~R,z!
, ~24!

where

k1~R!5~W̃1 ,W1!/k0 ,

g1~R!5~W̃1 ,L̂1W1!/k1k0 ,

K̃1~R,z!5S Q̂1
†L̂1

†W̃1 ,
1

z2Q̂1L̂1Q̂1

Q̂1L̂1W1D Y k1k0 .

~25!

Hence, repeating this procedure the Laplace transfo
F̃2(R,z) of the correlation function~10! can be written in
continued fraction representation:

F̂2~R,z!5
k0~R!

z2g0~R!2
k1~R!

z2g1~R!2
k2~R!

z2g2~R!2�

.

~26!

In this expression we used, forn51,2,..., the notation

kn~R!5~W̃n ,Wn!/kn21kn22¯k0 ,

gn~R!5~W̃n ,L̂n ,Wn!/knkn21¯k0 , ~27!

where

Wn5Q̂n21L̂n21Wn21 , W̃n5Q̂n21
† L̂n21

† W̃n21 ,

L̂n5Q̂n21L̂n21Q̂n21 . ~28!

At each iteration of the procedure new projection operat
are defined as
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P̂n•5Wn~W̃n ,Wn!21~W̃n ,• !

Q̂n51̂2 P̂n . ~29!

The novelty when the operatorL̂ is not Hermitian or anti-
Hermitian as is the case with the operatorL̂ defined in Eq.
~9! is that the new projection operators introduced to c
tinue the fraction are not self-adjoint, performing thus no
orthogonal projections. Only the operatorsP̂ andQ̂ perform
orthogonal projections. In the following section we analy
the scaling properties of this representation.

III. SCALING PROPERTIES OF THE CONTINUED
FRACTION REPRESENTATION

In this section we determine the leading scaling expone
of the quantitieskn(R) andgn(R) which appear in the con
tinued fraction expansion~26!. Notice that these quantitie
are tensors as the correlation function Eq.~12! itself is. We
shall show that the leading scaling behavior is given in ter
of correlation functions of time derivatives of the veloci
differencesW computed at zero time differences:

kn~R!'^L̂nW,L̂nW&/kn21kn22¯k0 ,

gn~R!'^L̂nWL̂n11W&/knkn21¯k0 . ~30!

Here the symbol' means ‘‘in leading scaling order’’ in the
limit Re→` and we recall from Eq.~7! that

L̂~r 0 ,t0ur ,r 8!W~r 0 ,t0ur ,r 8,t0!5
dW~r 0 ,t0ur ,r 8,t !

dt U
t5t0

.

~31!

To demonstrate the correctness of the formulas~30! let us
consider first the tensork0 defined in Eq.~19!. Because of
isotropy @see remark below Eq.~10!# its scaling is the same
as that of the second order structure functionS2 given in Eq.
~1!

k0~R!5~W,W!}Rz2. ~32!

As for the tensorg0 notice that it features the operatorL̂

g0~R!5~W,L̂W!/k0 . ~33!

We recall that from the scaling point of view in the limit o
infinite Reynolds number the operatorL̂ within the inner
product~or equivalently within the averaging operation! sim-
ply amounts to multiply withW/R, see Ref.@3#. This fol-
lows from the convergence in theUV and in theIR ~in the
limit Re→`) of the integral implied by the termsPJW•¹ r in
Eq. ~5!, so that the leading contribution comes from d
tances of the order ofR. In other words, the operatorL̂ in a
correlation function, when it operates onW, introduces a
term of the order ofW•¹W, which, due to the demonstrate
locality in scale space, can be estimated as adding to
correlation a factor of the order ofW/R. Hence using Eq.~1!
one obtains

g0~R!}Rz32z221. ~34!
-
-

ts

s

-

he

We now turn to the tensork1 defined in Eq.~25! which using
Eq. ~21! is written as

k1~R!5~Q̂†L̂†W,Q̂L̂W!/k05~W,L̂Q̂L̂W!/k0 . ~35!

The second equality results from the fact thatQ̂ is idempo-
tent. Using the definition ofQ̂512 P̂ one gets two terms
which contribute. Applying then the explicit form of the pro
jector P̂ one obtains for these two terms

k1~R!5~W,L̂2W!/k02~W,L̂W!2/k0
2. ~36!

Hence one obtains the following scaling:

k1~R!}Rz42z222~11constRz32z22~z42z3!!. ~37!

The leading term on the right-hand side of Eq.~37! can be
determined using the inequality

zm2zm21<zn2zn21 , m.n. ~38!

This follows from the convexity of the structure functio
exponentzn as a function ofn, which in turn is an immediate
consequence of Schwarz’ inequality applied to anynth order
structure function decomposition inton5m11m2 order ones
together with choosing the outer integral scaleL and not the
inner scaleh as the reference length.

uSn~R!u5u^Wm11m2&u<^W2m1&1/2^W2m2&1/2

5~S2m1
S2m2

!1/2. ~39!

Scalingwise,S(R)}(R/L)z, again usingL as the reference
length. BecauseR/L<1, Eq. ~39! implies

zm11m2
>

z2m1
1z2m2

2
, ~40!

the defining property of convex functions. These enjoy
monotonously nonincreasing derivative, i.e., Eq.~38!.

The contributions of the two terms in Eq.~37! can be
written as 11const(R/L)x, with x5z32z22(z42z3). In the
monofractal casex is zero, thus both terms scale alike.
there is multifractality, the nonlinear intermittency corre
tions makexÞ0. It now depends on the sign ofx and again
on the choice of the reference length for the multifrac
scaling, whether the second term is subdominant or do
nant. If the reference length ish, the inner viscous scale, the
R/h.1 and the second term dominates for positivex. If,
instead, the reference length isL, we haveR/L,1, implying
that the second term is subdominant for positivex. But in-
deedx>0 is a consequence of Schwarz’ inequality whi
together with identifyingL as the reference length implie
Eq. ~38!. That L is the relevant reference length is und
discussion but there are plausible arguments@14# though no
rigorous proof. Positivex together withL as the proper ref-
erence length for intermittency then also imply that the s
ond term in Eq.~37! can be neglected ifR is well within the
inertial range.

One obtains then

k1~R!'~W,L̂2W!/k0}Rz42z222. ~41!
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We are now in the position to determine the scaling of all
tensorskn and gn appearing in Eq.~26!. Proceeding along
the same lines one gets

kn~R!'~W,L̂2nW!/kn21kn22¯k0 ,

gn~R!'~W,L̂2n11W!/knkn21¯k0 . ~42!

This result can also be obtained by induction@13#. Eq. ~42!
together with Eq.~1! yield then the following explicit scaling
for n51,2,...:

kn~R!}Rz2n122z2n22,

gn~R!}Rz2n132z2n1221. ~43!

In finishing this section we note that the essence of the
gument is that for alln the projectorsQ̂n512 P̂n can scal-
ingwise be approximated as 1, sinceP̂n}(R/L)x and x
5z j 112z j2(z j 122z j 11) for some appropriatej. The terms
omitted in comparison to the leading scaling order ones
negligible only if there is substantial multifractality. The
may contribute at the inner scale border of the inertial ran
i.e., if R approachesh from above. The larger Re, the long
is the inertial subrange, the better is the leading order
proximation.

In case thath would be the relevant reference length t
leading scaling approximation of the continued fraction c
efficients would be different, resulting in a different mult
scaling of the correlations. These differences can be s
jected to experimental test.

In closing this section we emphasize that in the mo
fractal case we have to expect that all terms resulting fr
the decomposition of theQ projectors contribute alike, a
was observed already in Ref.@7#. Since the intermittency
corrections, which are responsible forx being nonzero, are
small, for the physically realizable Reynolds numbers Re
still will need all terms. It is only asymptotically for larg
enough Re that the leading scaling order will suffice. It is
advantage of the continued fraction expansion as comp
to the multifractal representation that all corrections are fu
included.

IV. SCALING LAWS IMPLIED BY THE CONTINUED
FRACTION REPRESENTATION: DERIVATIVES AT TIME

ZERO

In this section we identify the leading scaling expone
that characterize thenth order time derivative of the correla
tion function Eq.~11! at t50. We show that in the limit
Re→`

]nF2~R,t!

]tn U
t50

}Rz21n2nn50,1,... . ~44!

From Eq.~18! one deduces by inverse Laplace transfo
the following equation:

]F2~R,t!

]t
5g0~R!F2~R,t!1E

0

t

K0~R,t8!F2~R,t2t8!dt8,

~45!
e

r-

re

e,

p-

-

b-

-

e

e
ed
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whereK0(R,t) is the inverse Laplace transform ofK̃0(R,z),
see Eq.~22!, i.e.,

K0~R,t!5
1

k0~R!
~W̃1 ,eL̂1tW1!. ~46!

Equation ~45! is the so-called memory-function equatio
K0(R,t) being the memory kernel. Att50 Eq. ~45! be-
comes

]F2

]t
~R,0!5g0~R!k0~R!}Rz321, ~47!

where we used the scaling laws~32!, ~34!.
The second order partial time derivative is obtained

differentiating Eq.~45!,

]2F2~R,t!

]t2 5g0~R!
]F2

]t
~R,t!1K0~R,t!F2~R,0!

1E
0

t

dt8K0~R,t8!
]F2

]t
~R,t2t8!. ~48!

At t50 from Eqs.~25!, ~46!, ~47! one obtains

]2F2

]t2 ~R,0!5k0~R!@g0
2~R!1k1~R!#, ~49!

which, using Schwarz’ inequality in the form~38! together
with R/L<1 in the inertial subrange, is found to scale
leading order as

]2F2

]t2 ~R,0!'k0~R!k1~R!}Rz422. ~50!

Differentiating Eq.~48! once more and evaluating att50
one finds

]3F2

]t3 ~R,0!'k0~R!k1~R!g1~R!}Rz523. ~51!

One arrives thus at

]2nF2

]t2n ~R,0!'k0~R!¯kn~R!}Rz212n22n

]2n11F2

]t2n11
~R,0!'k0~R!¯kn~R!gn~R!}Rz312n22n21,

~52!

which can also be proven more formally by complete indu
tion @13#. The general expression comprising thesen
51,2,3 cases can be written in the form of Eq.~44!.

We have thus derived the complete Taylor series of
dynamical correlation functionF2(R,t), in which not only
the scaling behavior of the coefficients but also their abso
magnitude can be evaluated,

F2~R,t!5 (
n50

`
1

n!

]nF2

]tn ~R,0!tn5 (
n50

`
1

n!
An~R/L !zn122ntn.

~53!
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In the special case of monofractality in the spatial scal
we obtain also temporal monoscaling from Eq.~53!. Let zn
5nz1 , then z21n2n52z12n(12z1). Therefore, the
monofractal form arises

F2~R,t!5R2z1f 2~t/R12z1!, ~54!

where f 2 is a function of the scaled time variable only. Th
dynamical scaling exponent in the monofractal case is t
z512z1 while the static exponents arezn5nz1 .

V. THE MULTISCALING REPRESENTATION

In this section we compare two independent express
for the correlation functionF2(R,t): on the one hand the
multiscaling representation considered in Ref.@3# ~which has
not been used here so far despite the fact that we used
word multiscaling in the text above! and on the other hand
the continued fraction representation derived here. The m
tiscaling representation ofF2(R,t) can be written as@3#

F2~R,t!5U2E dm~h!S R

L D 2h1Z~h!

f 2S t

tR,h
D , ~55!

whereU is the characteristic magnitude of the velocity d
ference across the outer scale of turbulence,f 2 is a function
of the scaled time variable only, and

tR,h;
R

U S L

RD h

. ~56!

The functionZ(h) is related to the scaling exponentszn of
the nth order structure functions through the saddle po
requirement

zn5min
h

@nh1Z~h!#. ~57!

To find the scaling exponents associated with the time
rivatives of F2(R,t) at t50 one computes thenth order
partial time derivative of Eq.~55! to obtain

]nF2~R,t!

]tn 5
U21n

Rn E dm~h!S R

L D ~21n!h1Z~h! ]nf 2

]tn S t

tR,h
D .

~58!

At t50 this gives

]nF2

]tn ~R,0!5
]nf 2

]tn ~0!
U21n

Rn E dm~h!S R

L D ~21n!h1Z~h!

.

~59!

Computing the integral at the saddle point in the limitR/L
→0 and using Eq.~57! we find

]nF2

]tn ~R,0!}Rz21n2n. ~60!

We notice that this scaling is the same as in Eq.~44! ob-
tained from the continued fraction representation ofF2
which is derived independently of the multiscaling repres
tation. We thus see that the leading scaling approximatio
the continued fraction expansion generates the same pr
g
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tions regarding the multiplicity of time scales characterizi
the time correlation functions as the multiscaling represen
tion. We take this as an independent evidence for the c
rectness of the latter. If corrections to scaling become
evant, the continued fraction form, being exact, has to
taken.

VI. CONCLUSION

In conclusion, we showed that the exact continued fr
tion expansion of the time correlation functions of th
Monin-Belinicher-L’vov-velocity differences has the sam
Taylor expansion as the multiscaling representation of th
correlation functions, order by order in terms of the leadi
scaling contributions. We wish to emphasize that the con
ued fraction representation can be used as an approxim
for the time correlation function, when analytic forms
such time-correlation functions are needed. In the lowest
der continued fraction approximation one takes in Eq.~26!
k1(R)50, producing an exponential temporal decay of t
correlation function, with the decay rateg0(R)}Rz32z221.
The next approximation,k250, is written as

F̃2~R,z!5
k0~R!

z2g0~R!2k1~R!/@z2g1~R!#
. ~61!

In every successive approximation (k250, k350, etc.! one
introduces more and more characteristic scales, each
characterized by a different ‘‘dynamical exponent,’’ takin
progressively more information about the statistics of hig
order correlation functions into account.

Each finite,mth order continued fraction approximatio
results in anm-pole representation, whose poles as well
residues can be calculated from the static moments up to
order 2m. The temporal correlation decay is a superposit
of m exponentials with calculable decay rates.

As a final remark we stress that the conclusion is va
forward and backward: nonlinear or multiscalingzn of the
spatial scaling of the correlation functions imply tempo
multiscaling and vice versa, i.e., temporal monoscaling~with
some scaling exponentz! is consistent only with linear,
monoscalingzn5nz1 in spatial scaling. This sufficient an
necessary relation follows from the uniqueness of the con
ued fraction expansion. Namely, it is the very essence of
continued fraction representation that it completely det
mines all dynamical features from the static, i.e., equal ti
correlators.

One can easily identify the temporal scaling exponenz
defined in Eq.~1! or its negativea52z for the l-rescaling
exponent of the Laplace space frequency, if the static m
ments obey monoscaling. Start by convincing yourself t
all gn scale asL̂n , which behave asL̂ itself, because scal
ingwise theQ’s are 1, thus allgn}W/R}Rz121. Next verify
that all kn scale asL̂L̂. When rescalingF2(lR,laz), one
has to comparelaz with lz121g order by order of the con-
tinued fraction, implyinga5z121. ~The numerator in each
memory kernelkn is }L̂L̂, the corresponding denominato
}L̂, thus eachnth order memory contribution behaves lik
L̂, as theg’s do.!
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If there are intermittency corrections, meaning nonlinean

dependence of thezn , the gn are }L̂n and thekn}L̂nL̂n ,
beingnth or 2nth order moments, all scale differently wit
R. Each continued fraction order thus has differentR-scaling
coefficients, therefore breaking any clearcut scaling of
Laplace variablez. Note that the ‘‘amount’’ of breaking thez
or t scaling is of the order of the range in which thezn differ.

It should be clear that the lowest order continued fracti
putting K̃050, still enjoys time scaling, because only o
moment,g0(R), determines the dynamics. It also means t
any higher order truncation of the continued fraction infl
ences the value of the approximatet exponent. One need
the full continued fraction Eq.~26! to obtain the correctt
behavior.

In closing we first point out that besides measuring hig
order static equal time moments to determine the contin
fraction coefficients experimentalists should feel highly e
couraged to measure second order time correlation funct
h

v

E

J.

r

e
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t
-
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d
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ns

@cf. Eq. ~10!# as functions of both the spatial scaleR and the
time t, because on the latter it has a nontrivial function
dependence reflecting spatial multifractality in the dynami
Secondly, the extension of the continued fraction expans
to non-Hermitian dynamics, given here for the first time
the best of our knowledge, should prove useful for oth
physical systems sharing this property.
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